Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage

By: Veluswamy, HP; Kumar, S; Kumar, R; Rangsunvigit, P; Linga, P

FUEL
Volume: 182 Pages: 907-919
DOI: 10.1016/j.fuel.2016.05.068
Published: OCT 15 2016

Abstract

SNG (solidified natural gas) technology via clathrate hydrates is a potential method for large scale stationary storage of natural gas. Clathrate hydrate formation kinetics in presence of methane and 5.6 mol% tetrahydrofuran (THF) was investigated in an unstirred reactor configuration at moderate pressure and temperature conditions. It is well known that the presence of THF generally improves the thermodynamic stability of the resulting hydrate. In order to study the scale-up potential of this approach, kinetics of hydrate growth at temperatures close to ambient conditions and moderate pressures is required. Hydrate formation experiments were performed at three different temperatures - 283.2 K, 288.2 K and 293.2 K and at experimental pressures of 7.2 MPa, 5.0 and 3.0 MPa. Further, we report a synergistic effect of kinetic promotion of mixed methane hydrate formation by coupling THF and sodium dodecyl sulfate (SDS) at 293.2 K. For the first time, we observe rapid mixed methane/THF hydrate formation kinetics at 293.2 K in presence of just 100 ppm sodium dodecyl sulfate surfactant with methane gas uptake of 3.45 (+/- 0.17) kmol/m(3) of water in 1 h. This is also the first study to demonstrate such rapid hydrate formation kinetics with significant methane storage capacity at temperature of 293.2 K (closer to the ambient temperature). Further, substantial methane gas uptake of 3.52 (+/- 0.13) kmol/m(3) of water is possible even at reduced experimental pressure of 3.0 MPa and 283.2 K in 2 h. Minimal energy requirement in an unstirred reactor for mixed methane/THF hydrate formation storage can propel the SNG technology for large scale commercial deployment. Further improvement in the process can be achieved by optimizing the cooling requirement through innovative reactor design and operating the process in a semi-batch or continuous mode. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Author Keywords: Natural gas storage; Methane hydrates; Unstirred reactor; Rapid kinetics; Surfactant; Tetrahydrofuran

KeyWords Plus: UNSTIRRED GAS/LIQUID SYSTEM; METHANE HYDRATE; SELF-PRESERVATION; HYDROGEN STORAGE; BUBBLE-COLUMN; SURFACTANT; WATER; DISSOCIATION; SILICA; TETRAHYDROFURAN

Author Information

Reprint Address: Linga, P (reprint author)

Addresses:

[3] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand

View Journal Impact

Abstract

SNG (solidified natural gas) technology via clathrate hydrates is a potential method for large scale stationary storage of natural gas. Clathrate hydrate formation kinetics in presence of methane and 5.6 mol% tetrahydrofuran (THF) was investigated in an unstirred reactor configuration at moderate pressure and temperature conditions. It is well known that the presence of THF generally improves the thermodynamic stability of the resulting hydrate. In order to study the scale-up potential of this approach, kinetics of hydrate growth at temperatures close to ambient conditions and moderate pressures is required. Hydrate formation experiments were performed at three different temperatures - 283.2 K, 288.2 K and 293.2 K and at experimental pressures of 7.2 MPa, 5.0 and 3.0 MPa. Further, we report a synergistic effect of kinetic promotion of mixed methane hydrate formation by coupling THF and sodium dodecyl sulfate (SDS) at 293.2 K. For the first time, we observe rapid mixed methane/THF hydrate formation kinetics at 293.2 K in presence of just 100 ppm sodium dodecyl sulfate surfactant with methane gas uptake of 3.45 (+/- 0.17) kmol/m(3) of water in 1 h. This is also the first study to demonstrate such rapid hydrate formation kinetics with significant methane storage capacity at temperature of 293.2 K (closer to the ambient temperature). Further, substantial methane gas uptake of 3.52 (+/- 0.13) kmol/m(3) of water is possible even at reduced experimental pressure of 3.0 MPa and 283.2 K in 2 h. Minimal energy requirement in an unstirred reactor for mixed methane/THF hydrate formation storage can propel the SNG technology for large scale commercial deployment. Further improvement in the process can be achieved by optimizing the cooling requirement through innovative reactor design and operating the process in a semi-batch or continuous mode. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Author Keywords: Natural gas storage; Methane hydrates; Unstirred reactor; Rapid kinetics; Surfactant; Tetrahydrofuran

KeyWords Plus: UNSTIRRED GAS/LIQUID SYSTEM; METHANE HYDRATE; SELF-PRESERVATION; HYDROGEN STORAGE; BUBBLE-COLUMN; SURFACTANT; WATER; DISSOCIATION; SILICA; TETRAHYDROFURAN

Author Information

Reprint Address: Linga, P (reprint author)

Addresses:

[3] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand

View Journal Impact

Abstract

SNG (solidified natural gas) technology via clathrate hydrates is a potential method for large scale stationary storage of natural gas. Clathrate hydrate formation kinetics in presence of methane and 5.6 mol% tetrahydrofuran (THF) was investigated in an unstirred reactor configuration at moderate pressure and temperature conditions. It is well known that the presence of THF generally improves the thermodynamic stability of the resulting hydrate. In order to study the scale-up potential of this approach, kinetics of hydrate growth at temperatures close to ambient conditions and moderate pressures is required. Hydrate formation experiments were performed at three different temperatures - 283.2 K, 288.2 K and 293.2 K and at experimental pressures of 7.2 MPa, 5.0 and 3.0 MPa. Further, we report a synergistic effect of kinetic promotion of mixed methane hydrate formation by coupling THF and sodium dodecyl sulfate (SDS) at 293.2 K. For the first time, we observe rapid mixed methane/THF hydrate formation kinetics at 293.2 K in presence of just 100 ppm sodium dodecyl sulfate surfactant with methane gas uptake of 3.45 (+/- 0.17) kmol/m(3) of water in 1 h. This is also the first study to demonstrate such rapid hydrate formation kinetics with significant methane storage capacity at temperature of 293.2 K (closer to the ambient temperature). Further, substantial methane gas uptake of 3.52 (+/- 0.13) kmol/m(3) of water is possible even at reduced experimental pressure of 3.0 MPa and 283.2 K in 2 h. Minimal energy requirement in an unstirred reactor for mixed methane/THF hydrate formation storage can propel the SNG technology for large scale commercial deployment. Further improvement in the process can be achieved by optimizing the cooling requirement through innovative reactor design and operating the process in a semi-batch or continuous mode. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Author Keywords: Natural gas storage; Methane hydrates; Unstirred reactor; Rapid kinetics; Surfactant; Tetrahydrofuran

KeyWords Plus: UNSTIRRED GAS/LIQUID SYSTEM; METHANE HYDRATE; SELF-PRESERVATION; HYDROGEN STORAGE; BUBBLE-COLUMN; SURFACTANT; WATER; DISSOCIATION; SILICA; TETRAHYDROFURAN

Author Information

Reprint Address: Linga, P (reprint author)

Addresses:

[3] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand

Citation Network

11 Times Cited
59 Cited References
View Related Records
Create Citation Alert
(data from Web of Science Core Collection)

Usage Count
Last 180 Days: 23
Since 2013: 92
Learn more

Most Recent Citation

This record is from:
Web of Science Core Collection
- Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.

InCites
Journal Citation Reports
Essential Science Indicators
EndNote
Sign In ▼ Help ▼ English ▼
Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage

By: Veluswamy, HP (Veluswamy, Hari Prakash)¹; Kumar, S (Kumar, Sharad)¹; Kumar, R (Kumar, Rajnish)²; Rangsunvigit, P (Rangsunvigit, Pramoch)³; Linga, P (Linga, Praveen)¹

Abstract
SNG (solidified natural gas) technology via clathrate hydrates is a potential method for large scale stationary storage of natural gas. Clathrate hydrate formation kinetics in presence of methane and 5.6 mol% tetrahydrofuran (THF) was investigated in an unstirred reactor configuration at moderate pressure and temperature conditions. It is well known that the presence of THF generally improves the thermodynamic stability of the resulting hydrate. In order to study the scale-up potential of this approach, kinetics of hydrate growth at temperatures close to ambient conditions and moderate pressures is required. Hydrate formation experiments were performed at three different temperatures - 283.2 K, 288.2 K and 293.2 K and at experimental pressures of 7.2 MPa, 5.0 and 3.0 MPa. Further, we report a synergistic effect of kinetic promotion of mixed methane hydrate formation by coupling THF and sodium dodecyl sulfate (SDS) at 293.2 K. For the first time, we observe rapid mixed methane/THF hydrate formation kinetics at 293.2 K in presence of just 100 ppm sodium dodecyl sulfate surfactant with methane gas uptake of 3.45 (+/- 0.17) kmol/m³ of water in 1 h. This is also the first study to demonstrate such rapid hydrate formation kinetics with significant methane storage capacity at temperature of 293.2 K (closer to the ambient temperature). Further, substantial methane gas uptake of 3.52 (+/- 0.13) kmol/m³ of water is possible even at reduced experimental pressure of 3.0 MPa and 283.2 K in 2 h. Minimal energy requirement in an unstirred reactor for mixed methane/THF hydrate formation storage can propel the SNG technology for large scale commercial deployment. Further improvement in the process can be achieved by optimizing the cooling requirement through innovative reactor design and operating the process in a semi-batch or continuous mode. (C) 2016 Elsevier Ltd.

Keywords
Author Keywords: Natural gas storage; Methane hydrates; Unstirred reactor; Rapid kinetics; Surfactant; Tetrahydrofuran

KeyWords Plus: UNSTIRRED GAS/LIQUID SYSTEM; METHANE HYDRATE; SELF-PRESERVATION; HYDROGEN STORAGE; BUBBLE-COLUMN; SURFACTANT; WATER;