Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Vekaswamy, HP; Vekaswamy, Hari Prakash[1]; Wong, AJH (Wong, Alikon Jia Hui)[1]; Babu, P (Babu, Ponnavallavan)[1]; Kumar, R (Kumar, Rajnish)[2]; Kulprathipanja, S (Kulprathipanja, Sant[3]; Rangsunvigit, P (Rangsunvigit, Pramoch)[4]; Linga, P (Linga, Praveen)[5]

CHEMICAL ENGINEERING JOURNAL
Volume: 250 Pages: 161-173
DOI: 10.1016/j.cej.2016.01.026
Published: APR 15 2016

Abstract

Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor

KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information

Reprint Address: Linga, P (reprint author)

Address:

E-mail Addresses: Praveen.Linga@nus.edu.sg

Funding

Funding Agency Grant Number
National University of Singapore R-279-000-420-750 R-261-508-001-646 R-261-508-001-733
CSIR project CSC 0102
Thailand Research Fund

Publisher
ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Categories / Classification
Research Areas: Engineering
Web of Science Categories: Engineering, Environmental Engineering, Chemical

Document Information

Document Type: Article
Language: English
Accession Number: WOS:000371560100018
ISSN: 1385-8947
eISSN: 1873-3212

Journal Information
Performance Trends: Essential Science Indicators
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Vekaswamy, NP; Wong, AJH; Babu, P; Kumar, R; Veluswamy, HP; Kulprathipanja, S; Rangsunvigit, P

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10.

Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
- Gas hydrates
- Energy storage
- Tetrahydrofuran
- Enhanced kinetics
- Natural gas storage
- Unstirred tank reactor

Author Information
Reprint Address: Linga, P (reprint author)
Natl Univ Singapore, Dept Chem & Bioeng, Singapore 117585, Singapore

Addresses:

E-mail Addresses: Praveen.Lingga@nus.edu.sg

Funding
Funding Agency	Grant Number
National University of Singapore | R-279-000-420-750
R-261-008-001-646
R-261-008-001-733
CSIR project | CSC 0102
Thailand Research Fund

Publisher
ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Categories / Classification
Research Areas: Engineering
Web of Science Categories: Engineering, Environmental, Engineering, Chemical

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000371560100018
ISSN: 1385-8947
eISSN: 161-173

Journal Information
Performance Trends: Essential Science Indicators
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash); Wong, AJH (Wong, Alison Jia Hui); Babu, P (Babu, Ponnivalavan); Kumar, R (Kumar, Rajnish); Kulprathipanja, S (Kulprathipanja, Samit); Rangsunvigit, P (Rangsunvigit, Pramoch); Linga, P (Linga, Praveen)

CHEMICAL ENGINEERING JOURNAL
Volume: 290 Pages: 161-173
DOI: 10.1016/j.cej.2016.01.026
Published: APR 15 2016

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge in storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor
KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)
E-mail Addresses: Praveen.Lingga@nus.edu.sg

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National University of Singapore</td>
<td>R-279-000-420-750</td>
</tr>
<tr>
<td></td>
<td>R-261-508-001-646</td>
</tr>
<tr>
<td></td>
<td>R-261-508-001-733</td>
</tr>
<tr>
<td>CSIR project</td>
<td>CSC 0102</td>
</tr>
<tr>
<td>Thailand Research Fund</td>
<td></td>
</tr>
</tbody>
</table>

View funding text

Citation Network

30 Times Cited
81 Cited References

View Related Records

Create Citation Alert
(data from Web of Science Core Collection)

All Times Cited Counts
30 in All Databases
30 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in ScIELO Citation Index

Most Recent Citation

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash)[1]; Wong, AJH (Wong, Alison Jia Hui)[1]; Babu, P (Babu, Ponnivalavan)[1]; Kumar, R (Kumar, Rajnish)[2]; Kulprathipanja, S (Kulprathipanja, Sant)[3]; Rangsunvigit, P (Rangsunvigit, Pramoch)[4]; Linga, P (Linga, Praveen)[1]

View ResearcherID and ORCID

CHEMICAL ENGINEERING JOURNAL
Volume: 290 Pages: 161-173
DOI: 10.1016/j.cej.2016.01.026
Published: APR 15 2016
View Journal Impact

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor
KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)

Addresses:

E-mail Addresses: Praveen.Linga@nus.edu.sg

Citation Network

28 Times Cited
81 Cited References
View Related Records
Create Citation Alert (data from Web of Science Core Collection)

Usage Count
Last 180 Days: 28
Since 2013: 106
Learn more

Most Recent Citation
Wang, Yi-wei. The use of hydrate formation for the continuous recovery of ethylene and hydrogen from fluid catalytic cracking dry gas SEPARATION AND PURIFICATION TECHNOLOGY, OCT 31 2017.

This record is from: Web of Science Core Collection

View Record in Other Databases:
View biological data (in BIOSIS Previews)

Suggest a correction
If you would like to improve the quality of the data in this record, please

http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record...ode=GeneralSearch&qid=17&SID=N2RPpTREZrISAPbjCWs&page=1&doc=2
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash); Wong, AJH (Wong, Alison Jia Hui); Babu, P (Babu, Ponnivalavan); Kumar, R (Kumar, Rajnish); Kulprathipanja, S (Kulprathipanja, Santi); Rangsunvigit, P (Rangsunvigit, Pramoch); Linga, P (Linga, Praveen)

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor

Address:
Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore

E-mail Addresses: Praveen.Linga@nus.edu.sg

Funding
Funding Agency	Grant Number

Citation Network

All Times Cited Counts
24 in All Databases
24 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Usage Count
Last 180 Days: 27
Since 2013: 97
Learn more

Most Recent Citation
Zhang, Zhaoli. Thermal properties enforcement of carbonate ternary via lithium fluoride: A heat transfer fluid concentrating solar power systems. RENEWABLE ENERGY, OCT 2017.

This record is from:
Web of Science Core Collection - Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash)[1]; Wong, AJH (Wong, Alison Jia Hui)[1]; Babu, P (Babu, Ponnivalavan)[1]; Kumar, R (Kumar, Rajnish)[2]; Kulprathipanja, S (Kulprathipanja, Sant)[3]; Rangsunvigit, P (Rangsunvigit, Pramoch)[4]; Linga, P (Linga, Praveen)[1]

View ResearcherID and ORCID

CHEMICAL ENGINEERING JOURNAL
Volume: 290 Pages: 161-173
DOI: 10.1016/j.cej.2016.01.026
Published: APR 15 2016

Abstract

Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor

KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information

Reprint Address: Linga, P (reprint author)

Addresses:

E-mail Addresses: Praveen.Linga@nus.edu.sg

Citation Network

19 Times Cited
81 Cited References
View Related Records
View Citation Map
Create Citation Alert
(data from Web of Science™ Core Collection)

All Times Cited Counts
19 in All Databases
19 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Highly Cited Paper

Usage Count
Last 180 Days: 29
Since 2013: 83
Learn more

Most Recent Citation

View All

This record is from:
Web of Science™ Core Collection

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash)¹; Wong, AJH (Wong, Alison Jia Hui)¹; Babu, P (Babu, Ponnivalavan)¹; Kumar, R (Kumar, Rajnish)²; Kulprathipanja, S (Kulprathipanja, Santi)³; Rangsunvigit, P (Rangsunvigit, Pramoch)⁴; Linga, P (Linga, Praveen)¹

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor
KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)

Addresses:
1 Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
Highly Cited Thresholds

The highly cited threshold is the minimum number of citations received by the top 1% of papers in the research field published in the specified year.

Sample Report

In the following report, the top 1% of papers in Physics added to Web of Science in 2010 received at least 44 citations. The top 1% of papers in Plant & Animal Science added to Web of Science in 2011 received at least 16 citations. Articles citing the 2010 papers may have been published between 2010 and 2013. Articles citing the 2011 papers may have been published between 2011 and 2013.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS</td>
<td>61</td>
<td>44</td>
<td>26</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>PLANT & ANIMAL SCIENCE</td>
<td>42</td>
<td>29</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>